
E

E.1 PeriDyn

E.1.1 PeriDyn Environment

PeriDyn provide Env struct to hold information regarding system state and other parameters.

Env struct is passed to the run! (see sec E.1.7) function along with solver (see sec E.1.6)

and other simulation parameters such as number of time steps, file write frequency, and

neighbor update interval etc. The Env struct is shown below.

mutable struct GeneralEnv

id::Int64

type::AbstractArray{Int64,1}

bid::AbstractArray{Int64,1}

ghost_atoms::AbstractArray{Int64,1}

state::Int64

y::AbstractArray{Float64,2}

v::AbstractArray{Float64,2}

f::AbstractArray{Float64,2}

p::AbstractArray{Float64,2}

volume::AbstractArray{Float64,1}

318

intact0::AbstractArray{Int64, 1}

mass::AbstractArray{Float64,1}

time_step::Int64

dt::Float64

neighs::AbstractArray{Int64,2}

boundary_conditions::Any

short_range_repulsion::Any

material_blocks::Any

boundaries::Tuple

Collect!::Any

Params::Any

Out::Any

end

It is a mutable struct type and can be updated once created. Instead of default con-

structor, PeriDyn also provide Env(id::Int64, materials, short_range_repulsion,

boundary_conds, dt; state=2, bskin=0.5) where id is environment id, materials is

array of material blocks (see sec E.1.3), short_range_repulsion is array of contact models

(see sec E.1.4), boundary_conds is array of boundary conditions (see sec E.1.5), and dt is

time step. It calculates all the filelds of Env struct under the hood and create an object of

type Env. Once Env is created, it can be updated as and when required.

E.1.2 Material Discretization

Peridynamics utilize material point grid to define a material block. Each material point have

its properties such as position, velocity, acceleration, volume and density etc. To define such

properties of material block, PeriDyn provide GeneralMaterial(y0, v0, x, volume,

E.1 PeriDyn 319

type, horizon; max_neigh=100, particle_size=0) (see sec E.1.3) where y0 is initial

deformed position, v0 is initial velocity, x is reference position, volume is volume, type is

type of material and horizon is horizon as defined in peridynamics. To discretize a material

block, users can use PDMesh (pdm) (https://github.com/ravinderbhattoo/PDMesh) which

will provide y0, v0, x, volume, type for GeneralMaterial. Users can also use seperate

software to generate files for these inputs and directly load these files in Julia.

E.1.3 Material Models

In peridynamics, a material model defines the constitutive relationship of a material (see

sec 7.2.3). These constitutive relationship dictates forces between material points on de-

formation. PeriDyn implements by holding information regarding material model with

PeridynamicsMaterial(bid, gen, spc; name="PM") struct, where bid is block id, gen

is general material, spc is specific material, and name is name of peridynamics material

block. The GeneralMaterial struct holds the information which are common for all the

peridynamics material models where as SpecificMaterial holds the information which

are specific to constitute relationship of material. The GeneralMaterial struct is given

below.

struct GeneralMaterial

y::Array{Float64,2}

velocity::Array{Float64,2}

x::Array{Float64,2}

volume::Array{Float64,1}

type::Array{Int64,1}

particle_size::Float64

horizon::Float64

family::Array{Int64,2}

320

intact::BitArray{2}

weighted_volume::Array{Float64,1}

deformed::Vector{Bool}

end

PeriDyn also provide a GeneralMaterial(y0, v0, x, volume, type, horizon;

max_neigh=100, particle_size=0) method which calculates some of the fields under

the hood and return a object of type GeneralMaterial. An example of specific material

model struct is given below.

struct BondBasedSpecific <: SpecificMaterial

bond_stiffness::Array{Float64,2}

critical_stretch::Array{Float64, 2}

density::Array{Float64, 1}

end

Here, bond_stiffness is stiffness of bond as defined for micro-brittle-linear-elastic

peridynamics material model, critical_stretch is critical stretch and density is density

of material. BondBasedSpecific is a concrete subtype of SpecificMaterial which is an

abstract type. A list of implemented SpecificMaterial is given below with their method

signatures.

• BondBasedSpecific(S, critical_stretch, density::Array{Float64, 1})

• ElastoPlasticSolidSpecific(bulk_modulus::Array{Float64,1},

shear_modulus::Array{Float64,1}, critical_stretch::Array{Float64,1},

density::Array{Float64,1}, sigma_y; criteria = VonMises())

• OrdinaryStateBasedSpecific(bulk_modulus::Array{Float64, 1},

shear_modulus::Array{Float64,1}, critical_stretch::Array{Float64,1},

density::Array{Float64,1})

E.1 PeriDyn 321

• PairwiseNNSpecific(layers, critical_stretch, density::Array{Float64,

1}; act=Flux.relu)

• SkipSpecific()

E.1.4 Contact Models

In peridynamics simulation, repulsive interaction between two physical blocks is mod-

eled through a contact model. A contact model defines the repulsive interaction between

particles of two physical blocks as well as the repulsive interaction between the parti-

cles of the same block which are not connected through peridynamics bond. To model

such interactions, PeriDyn offers abstract type RepulsionModel11 and RepulsionModel12.

Here, RepulsionModel11 model interaction between the particles of same block and

RepulsionModel12 model interaction between the particles of different blocks. PeriDyn

package implements the following contact models.

• LJRepulsionModel

It defines the LJ interactions between the particles of peridynamics material blocks using

an expression F (r) = dV
dr

where V (r) = 4ǫ((σ
r

)12
− (σ

r
)6).

• NonLinearRepulsionModel

It uses non-linear spring equation as F (r) = K r n where K is spring constant and n is

exponent.

• LinearRepulsionModel

It is a special case of NonLinearRepulsionModel where exponent is set to 1.

All contact models can be defined as ModelName(args..., mat1::PM,

mat2::PM; distanceX = 5, max_neighs = 200) for inter-block interaction and

ModelName(args..., mat1::PM; distanceX = 5, max_neighs = 200) for intra-

block interactions. Here, the lookup distance (distanceX) for neighbors is set to a default

322

value of 5 × the particle size and maximum number of neighbors max_neighs is set to a

default value of 200.

To calculate the repulsive force using theses contact model, we use

repulsion_force(dr, RepMod::RepulsionModel) where dr is distance between

particles and RepMod is repulsion model defined for the particles.

The package also offers short_range_repulsion!(y, f, type, bid, vol, RM)

which will mutate the force vector (f) of a given peridynamics environment by adding

the repulsive forces. Here, y is updated position of particles, f is force vector, bid is block-id,

vol is volume of particles and RM is repulsion model.

E.1.5 Boundary Conditions

To impose external conditions such as constant strain rate, fix boundary, fixed force value

and initial projectile velocity – the PeriDyn package use boundary conditions. Here, we de-

fine two abstract types BoundaryCondition and BoundaryConditionat0. The boundary

condition BoundaryConditionat0 is applied only at start so that we can set some of the sys-

tem values such as initial projectile velocity. The boundary condition BoundaryCondition

is applied throughout the whole simulation. All the boundary conditions are concrete

subtypes of one of the two abstract boundary conditions. To apply boundary condition

during simulation, we use apply_bc!(env, BC::T, ::Type{Val{:position}})where

T <: BoundaryCondition function inside a solver. The solver will apply all boundary

conditions in order after each system state update. Note that since it is applied sequen-

tially, a latter boundary condition can override a former boundary condition. A boundary

condition is defined as a struct with at least the following fields.

struct BoundaryCondition

bool::Array{Bool, 1}

last::Array{Float64, 2}

E.1 PeriDyn 323

onlyatstart::Bool

xF::Function

vF::Function

...

end

Here, bool defines the boolean array for particle ids where the boundary condition

will be applied. last is used to hold the previous state of the particles usually positions.

onlyatstart is used for solvers which perform iterations other than the for time evolution.

xF function is applied on positions and vF function is applied on velocities when boundary

condition is applied. Some of the implemented boundary conditions are as follows:

• FixBC(bool; onlyatstart = false)

FixBCwill fix the particle positions from the initial frame. Here, only argument is a boolean

array of particle ids and keyword argument is used as described above. It can be used to

fix an end of a bar.

• ToFroBC(bool, rate, freq; applyafter = 0, onlyatstart = false)

Given a velocity rate and frequency, ToFroBC will perform a to and fro motion for the

particles. We can also delay the operation by setting applyafter to some desired frame.

It can be used to apply a strain rate or constant velocity.

• MoveBC(bool, rate; kwargs...)

MoveBC is a special case of to and fro boundary condition where the frequency is set to

infinite explicitly by calling ToFroBC(bool, rate, Inf; kwargs...). Therefore, it will

move the particles at a given rate in a particular direction.

• DeltaScaleBC(bool, scale, fixpoint; onlyatstart = false)

DeltaScaleBC scales the material points about a fixed point. It can be used for quasi-

static simulation where we look for the equilibrium position of the system. It is often

easier to achieve equilibrium faster from a scaled system state.

324

E.1.6 Solvers

The PeriDyn package provides two abstract type for solvers, a) QuasiStaticSolver

for quasi-static simulations and b) DynamicSolver for dynamic simulations. It im-

plements QSDrag(step_size, drag; max_iter = 100, x_tol = 1.0e-6, f_tol =

1.0e-6), here step_size is size of step in gradient descent optimiser and drag is for viscous

damping, as a quasi-static solver which iteratively solves for position with equilibrium i.e.

net force on all particles should be zero. All solvers <: QuasiStaticSolver are suppose

to have three parameters a) max_iter, the maximum number of iteration for finding solutu-

ion for position, b) x_tol, the tolerance for change in position and c) f_tol, the tolerance

for net force on particles. For dynamic simulation, PeriDyn provides DSVelocityVerlet()

which perform standard velocity-verlet algorithm for time evolution of system. All dynamic

solver implementations should be subtype of DynamicSolver and all quasi-static solver

implementations should be subtype of QuasiStaticSolver. An apply_solver! function

must be defined for all solvers (see sec E.1.7).

E.1.7 Simulation

To run a simulation with environments (see sec E.1.1), PeriDyn provide run!

function. The run!(envs, N::Int64, solver; filewrite_freq::Int64

= 10, neigh_update_freq::Int64 = 1, average_prop_freq::Int64 = 1,

out_dir::String = "datafile", start_at::Int64 = 0, write_from::Int =

0, ext::Symbol = :jld, max_part = 30) function take, envs (array of environment),

N (number of time steps), and solver (solver) as arguments with other keyword arguments.

The function performs a loop with N time and updates the system state for all the

environments. The run! function mutates the state of envs, and we get an array of updated

environments. The simulate!(args...; out_dir="datafile", append_date=true,

E.1 PeriDyn 325

kwargs...) function also provide similar functionality and it is wrapper over run! function.

The run! function calls apply_solver!(apply_solver!(env, solver)) function where

solver is a subtype of Union{QuasiStaticSolver, DynamicSolver}. Each solver must

define apply_solver! function, which implements the solver over environment variables.

The apply_solver! mutates the state of the given environment.

E.1.8 Parallel Computing

In peridynamics, for a given system state, the force calculation is per-particle basis and is in-

dependent of the forces on other particles. Therefore, parallel operations can be used to cal-

culate the per-particle force. The force function force_density_T of material models uses

map on the out loop and mapreduce on the inner loop during the force density calculation.

The map and mapreduce are standard functions of Julia which perform operation in parallel.

By default, Julia runs with four threads which can be override by executing julia -t

num_threads for interactive session and julia -t num_threads filename.jl for run-

ning scripts. The PeriDyn package also uses Threads package for multi-threading of for

loops in functions such as cal_family! (calculates the family members within the horizon),

update_repulsive_neighs! (which updates the neighbors for the contact as defined in

section E.1.4) and weighted_volume. The performance of parallel operations for family

calculation is shown in Figure E.1. The tests were performed with three systems with the

number of particles 500000, 4000, and 500. As shown in Figure E.1 a, b, c – the time taken to

compute decreases with the number of threads available for parallel operations. We also

plot the time taken vs the size of the system for four threads in Figure E.1. It show linear

scaling for log (T) vs log (N) where T is the time and N is system size. The number shown

in the figure may vary depending on the system hardware and other parameters.

326

Figure E.1 Time taken vs. the number of threads with different system sizes.

E.1.9 Input/Output

The package offers saving of file as text as well as binary using JLD (jld) julia package. The

write_data(filename; kwargs...) functions is default function for writing simulation

trajectories on the disk. It uses file extension as hint and fall back to an appropriate write

function. It supports jld and data as valid file extensions. In case of an invalid file extensions,

it defaults to jld data format without changing the given file extension. The solver function

saves id, type, position, velocity, acceleration, mass, volume and damage to the disk using

the write_data(filename; kwargs...) by providing keyword arguments. The default

function to write jld files is save function from LJD julia package. It uses save(filename,

items...) where items are the data-fields as provided in solver function. In case of

data files, write_ovito(filename::String; kwargs...) is the default function which

writes Ovito (Stukowski, 2010) compatible text files according to its data file extension.

It is advisable to write jld files during the simulation as writing jld file is much faster as

E.1 PeriDyn 327

compared to writing data file specially for larger file sizes. The package also provides

functions to covert jld files to data files for visualization in Ovito (see sec E.1.10). The

jld2ovito(filename::String) writes a new data file with data extensions appended to

the given filename. To convert multiple jld files we can use jld2ovito(file, N; start

= 0, step = 100) where file is string with a wildcard * for e.g. env_step_*.jld. The

function will loop, with local variable i, from start to N with step step and replace the

wildcard with i.

E.1.10 Visualization

Visualizing the simulation results of physical system is key to access the validity of the

simulations. It also provides insights in the physical phenomenon happening during the

simulation. As mentioned in the section E.1.9, PeriDyn simulation files can be converted

to Ovito compatible data files for visualization (see Figure E.3).It is a text file with per

particle information of the system. The write_ovito(filename::String; kwargs...)

can be used to write files to insert custom data for visualization after preprocessing. The

file structure for the data file is shown in Figure E.2. Here, line number 1 show the total

number of particles in the system, line number 2 show the column names for the data (note

that some data column are grouped together under on name for e.g. position will have 3

columns), and remaining lines shows the data values.

Figure E.2 A truncated sample data file from PeriDyn simulation.

E.2 Benchmarking PeriDyn models 329

A bar with length 7.2, cross-section 4×4 and resolution 0.1 is stretched using

both ends of bar. The simulation is performed with a) BondBasedSpecific and b)

OrdinaryStateBasedSpecific material models as shown in Figure E.5. Figure E.4 shows

the time evolution of damage. List of relevant parameters with arbitrary units are given in

Table E.2.1.

Parameter Value

Length 7.2

Width 4.0

Height 4.0

Resolution 0.1

Poison’s ration 0.25

E (Young’s modulus) 200.0

K (bulk modulus) 133.33

G (shear modulus) 80.0

Density 2000.0

Critical stretch 0.01

Horizon 3×Resolution = 0.3

Time step 0.158

Bond stiffness 18K
pi×Hor i zon4 = 94314.0

Table E.1 List of parameters used for simulation of bar under tensile loading.

As shown in Figure E.5, the Young’s modulus from simulation is close to the given Young’s

modulus.

Material model Actual Simulation

BondBasedSpecific 200.0 190.1

OrdinaryStateBasedSpecific 200.0 210.5

Table E.2 Comparison of Young’s modulus.

E.2 Benchmarking PeriDyn models 331

(a) (b)

Figure E.5 Normal stress vs strain curve for bar simulation under constant strain rete for a)

bond based model and b) ordinary state based model.

E.2.2 Flexure simulation

Bar under flexure loading (displacement controlled)

A bar with length 12.4, cross-section 2.0×2.0 and resolution 0.2 is fixed at both ends and

both ends are moved in lateral direction to induce flexure load. The simulation is performed

with BondBasedSpecific material model as shown in Figure E.7. Figure E.6 shows the time

evolution of damage. List of relevant parameters with arbitrary units are given in Table E.2.2.

332

Parameter Value

Length 12.4

Width 2.0

Height 2.0

Resolution 0.2

Poison’s ration 0.25

E (Young’s modulus) 200.0

K (bulk modulus) 133.33

G (shear modulus) 80.0

Density 2000.0

Critical stretch 0.01

Horizon 3×Resolution = 0.6

Time step 0.632

Bond stiffness 18K
pi×Hor i zon4 = 5894.6

Flexure stiffness 12E I
L4 = 1.67

Table E.3 List of parameters used for simulation of bar under flexure loading.

As shown in Figure E.7, the flexural stiffness from simulation is close to the calculated

theoretical value.

Material model Actual Simulation

BondBasedSpecific 1.67 1.78

Table E.4 Comparison of Young’s modulus.

E.2.3 Wave propagation simulation

Pressure wave propagation (impulse loading)

A bar with length 21.2, cross-section 2.0×2.0 and resolution 0.1 is fixed at left end and

right end was given initial momentum to induce impulse load. The simulation is performed

334

with BondBasedSpecific material model as shown in Figure E.9. Figure E.8 shows the time

evolution of normal stress along the length of bar. List of relevant parameters with arbitrary

units are given in Table E.2.3.

Parameter Value

Length 21.2

Width 2.0

Height 2.0

Resolution 0.1

Poison’s ration 0.25

E (Young’s modulus) 20.0

K (bulk modulus) 13.33

G (shear modulus) 8.0

Density 2000.0

Critical stretch 0.01

Horizon 3×Resolution = 0.3

Time step 1.0

Bond stiffness 9431.4

Wave velocity 0.1

Table E.5 List of parameters used for simulation of bar under impulse loading.

As shown in Figure E.9, the wave velocity from simulation is close to the calculated

theoretical value. Time taken by wave to reach the other end is 195×0.1 = 195.0, therefore

wave velocity L
∆t

= 21.2/195.0 = 0.108.

Material model Actual Simulation

BondBasedSpecific 0.100 0.108

Table E.6 Comparison of Young’s modulus.

336

Figure E.9 Time evolution of normal stress at fixed end of a bar after impulse load.

E.2 Benchmarking PeriDyn models 337

E.2.4 Impact simulation

Impact (collision of separate blocks)

A disk with radius 25.0, thickness 4.0 and resolution 0.5 is is hit by a projectile. The

simulation is performed with BondBasedSpecific material model as shown in Figure E.11.

Figure E.10 shows the time evolution of damage. List of relevant parameters with arbitrary

units are given in Table E.7.

Parameter Value

Disk radius 25.0

Disk thickness 4.0

Disk resolution 0.5

Projectile radius 3.0

Projectile resolution 0.5

Poison’s ration 0.25

E (Young’s modulus) 2000.0

K (bulk modulus) 1333.3

G (shear modulus) 800.0

Disk density 2000.0

Projectile density 20000.0

Disk critical stretch 0.01

Projectile critical stretch 0.1

Horizon 3×Resolution = 1.5

Time step 0.5

Bond stiffness 18K
pi×Hor i zon4 = 1509.0

Table E.7 List of parameters used for simulation of disk being hit by a projectile.

E.3 Machine learned constitutive relationship 339

E.3 Machine learned constitutive relationship

E.3.1 Peridynamics simulation with bond based material

Tensile simulation

importing packages

using PDBenchmark

using PeriDyn

using Random

using BSON

using Flux

Random.seed!(42)

setting paramters

const Es = 70.0

const nu = 0.25 # for bond based peridynamics

K = Es/3/(1-2nu)

G = Es/2/(1+nu)

const rho = 2.2 # g/cm3

wv = sqrt(Es/rho)

println("Wave velocity: ", wv)

const cs = 0.1

const reso = 0.1

const horizon = 3.0*reso

time_step = 0.5 * reso / wv

C = 18K/(pi*horizon^4)

define material block

340

gen_mat = PDBenchmark.NameParam(:GeneralMaterial, (horizon),

Dict(:max_neigh=>150, :skip_bb=>true))

spc_mat = PDBenchmark.NameParam(:BondBasedSpecific, ([C], [cs], [rho],

), Dict(:func=>(s, C) -> C*s))

define solver

solver = DSVelocityVerlet()

setup and clean output directory

out_dir = "MLTensileBarBBNL_" * string(typeof(solver))

try

foreach(rm, filter(endswith(".data"), readdir("./output/"*out_dir,

join=true)))

catch

nothing

end

perform simulation

test = PDBenchmark.TensileBar(;gen_mat=gen_mat, dt=time_step,

spc_mat=spc_mat, resolution=reso,

solver=solver, Steps=1000,

out_dir=out_dir, fwf=10, makeplot=true,

trueE=Es)

env, solver, solvef! = PDBenchmark.stage!(test)

solvef!(env, solver)

E.3.2 Machine leanring with PeriDyn

importing packages

E.3 Machine learned constitutive relationship 341

using PeriDyn

using Random

using Flux

using BSON

using Zygote

using PDMesh

Random.seed!(2020)

adding some zygote rules (not necessary for the task every time)

using Zygote

function add!(a::Nothing, b::Zygote.Grads)

b

end

function add!(a::Zygote.Grads, b::Zygote.Grads)

for p in a.params

a[p] .= a[p] .+ b[p]

end

a

end

function div!(a::Zygote.Grads, i::T) where T <: Real

for p in a.params

a[p] ./= i

end

a

end

function mul!(a::Zygote.Grads, i::T) where T <: Real

for p in a.params

342

a[p] .*= i

end

a

end

parameters for simulation

const Es = 70.0

const nu = 0.25 # for bond based peridynamics

K = Es/3/(1-2nu)

G = Es/2/(1+nu)

const rho = 2.2 # g/cm3

wv = sqrt(Es/rho)

println("Wave velocity: ", wv)

const cs = 0.1

const reso = 0.1

const horizon = 3.0*reso

time_step = 0.5 * reso / wv

C = 18K/(pi*horizon^4)

read data from simulation

Out = PeriDyn.jld2array("./output/$(out_dir)/env_1_step_*.jld", 1000;

start=0, step=10)

defien material models

x = Out[1][:position]

vol = Out[1][:volume]

type = Out[1][:type]

out = x, 0*x, x, vol, type

E.3 Machine learned constitutive relationship 343

gen_mat = GeneralMaterial(out..., horizon; max_neigh=150, skip_bb=true)

squareplus(x) = 0.5*(x + sqrt(x^2 + 4))

nn_spc_mat = PairwiseNNSpecific([1, 10, 10, 1], [cs], [rho];

act=squareplus)

nn_mat = PeridynamicsMaterial(deepcopy(gen_mat), nn_spc_mat)

edit default NN model

model = Chain(Dense(1, 10, leakyrelu), Dense(10, 10, leakyrelu),

Dense(10, 1, leakyrelu), x->1000*x)

nn_mat.specific.NNs[1, 1] = model

loss function

function loss(kk)

Ns = Zygote.@ignore get_Ns()

data = Out[kk][:acceleration] ./ density

sum((data - force_density_T(Out[kk][:position], nn_mat;

particles=Ns)).^2)

end

optimiser

ps = Flux.params(nn_mat.specific.NNs[1, 1])

opt = Flux.Adam()

Ns = [1]

function get_Ns()

Ns

end

Training

for i in 1:10000

if (i%10==0 | i==1)

344

Ns = rand(1:size(y, 2), 10)

nns = rand(1:100, 2)

end

gs = div!(reduce(add!, ((kk) -> Flux.gradient(()->loss(kk),

ps)).(nns)), length(nns))

Flux.update!(opt, ps, gs)

println("$i, $(reduce(+, loss.(nns))/length(nns))")

save model every 100 iteration

if i%100==0

BSON.@save "mymodel.bson" model

end

end

E.3.3 Peridynamics simulation with machine learned material

Tensile simulation with machine learned material

importing packages

using PDBenchmark

using PeriDyn

using Random

using BSON

using Flux

Random.seed!(42)

setting paramters

const Es = 70.0

const nu = 0.25 # for bond based peridynamics

E.3 Machine learned constitutive relationship 345

K = Es/3/(1-2nu)

G = Es/2/(1+nu)

const rho = 2.2 # g/cm3

wv = sqrt(Es/rho)

println("Wave velocity: ", wv)

const cs = 0.1

const reso = 0.1

const horizon = 3.0*reso

time_step = 0.5 * reso / wv

C = 18K/(pi*horizon^4)

define material block

gen_mat = PDBenchmark.NameParam(:GeneralMaterial, (horizon),

Dict(:max_neigh=>150, :skip_bb=>true))

squareplus(x) = 0.5*(x + sqrt(x^2 + 4))

spc_mat = PDBenchmark.NameParam(:PairwiseNNSpecific, ([1, 10, 10, 1],

[cs], [rho]), Dict(:act=>squareplus))

define solver

solver = DSVelocityVerlet()

setup and clean output directory

out_dir = "MLTensileBarBBNL_" * string(typeof(solver))

try

foreach(rm, filter(endswith(".data"), readdir("./output/"*out_dir,

join=true)))

catch

nothing

end

346

perform simulation

test = PDBenchmark.TensileBar(;gen_mat=gen_mat, dt=time_step,

spc_mat=spc_mat, resolution=reso,

solver=solver, Steps=1000,

out_dir=out_dir, fwf=10, makeplot=true,

trueE=Es)

env, solver, solvef! = PDBenchmark.stage!(test)

BSON.@load "mymodel.bson" model

env.material_blocks[1].specific.NNs[1, 1] = model

solvef!(env, solver)

348

Figure E.11 Damage evolution of a disk being hit by a projectile.

